Entrer un problème...
Ensembles finis Exemples
Étape 1
Définissez le radicande dans inférieur à pour déterminer où l’expression est indéfinie.
Étape 2
Étape 2.1
Soustrayez de .
Étape 2.2
Ajoutez aux deux côtés de l’inégalité.
Étape 2.3
Divisez chaque terme dans par et simplifiez.
Étape 2.3.1
Divisez chaque terme dans par . Lorsque vous multipliez ou divisez les deux côtés d’une inégalité par une valeur négative, inversez le sens du signe d’inégalité.
Étape 2.3.2
Simplifiez le côté gauche.
Étape 2.3.2.1
Annulez le facteur commun de .
Étape 2.3.2.1.1
Annulez le facteur commun.
Étape 2.3.2.1.2
Divisez par .
Étape 2.3.3
Simplifiez le côté droit.
Étape 2.3.3.1
Placez le signe moins devant la fraction.
Étape 3
L’équation est indéfinie là où le dénominateur est égal à , l’argument d’une racine carrée est inférieur à ou l’argument d’un logarithme est inférieur ou égal à .
Étape 4